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n this study, fully developed flow parallel to ordered fibers is
nvestigated analytically. The considered fibrous media are made
p of in-line (square), staggered, and hexagonal arrays of cylin-
ers. Starting from the general solution of Poisson’s equation,
ompact analytical solutions are proposed for both velocity dis-
ribution and permeability of the considered structures. In addi-
ion, independent numerical simulations are performed for the
onsidered arrangements over the entire range of porosity and the
esults are compared with the proposed solutions. The developed
olutions are successfully verified through comparison with ex-
erimental data, collected by others, and the present numerical
esults over a wide range of porosity. The results show that for the
rdered arrangements with high porosity, the parallel permeabil-
ty is independent of the microstructure geometrical arrange-
ents; on the other hand, for lower porosities the hexagonal ar-

angement provides lower pressure drop, as expected.
DOI: 10.1115/1.4002169�

eywords: creeping flow, parallel permeability, ordered fibers,
nalytical solution, fibrous porous media

Introduction
Transport phenomena in porous media have been the focus of

umerous studies since the 1850s, which indicates the importance
f this topic. Most of these studies refer to granular materials with
ow and medium porosities, 0.3���0.6 �1�. Fibrous structures,

ade up of cylindrical-like particles, can form mechanically
table geometries with high porosity, up to 0.99 �2�. Moreover,
hese fibrous structures feature low-weight, high surface-to-
olume ratios, and high heat transfer coefficients �3�, which make
hem suitable for application in several engineering areas includ-
ng: filtration and separation of particles �4,5�, composite fabrica-
ion �6,7�, heat exchangers �3�, and fuel cells �8�. Experimental
bservations have shown that a linear relationship exists between
he volume-averaged superficial fluid velocity and the pressure
radient; this is called Darcy’s law �1�.

−
dP

dz
=

�

K
UD �1�

here � is the fluid viscosity and K is the viscous permeability of
he medium. Viscous permeability can be interpreted as the ability
f the porous matrix to pass fluids. Macroscopic transport proper-
ies such as permeability and heat transfer coefficient are func-
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tions of geometrical features of the porous medium; thus, deter-
mination of exact transport properties for real fibrous materials
with random structures is very complex and in many cases not
possible. However, several researchers have argued that unidirec-
tional fibers are the most permeable fibrous structures when flow
is parallel to the fibers axes �9�. Moreover, a blend of normal and
parallel permeabilities of unidirectional arrangements provides an
estimate for the permeability of random fibrous media, e.g., Jack-
son and James �10� and Happel and Brenner �11�. Therefore, a
detailed analysis of parallel permeability of unidirectional fibers is
valuable.

Happel �12� and Sparrow and Loeffler �13� studied parallel per-
meability for unidirectional cylinders for heat exchanger applica-
tion. Happel �12� assumed a circular unit cell with a single cylin-
der located at its center and applied zero-shear stress boundary
condition on the outer surface of the control volume; this method
is called the limited boundary layer approach. However, the model
of Ref. �12� cannot accurately predict the parallel permeability for
lower porosities where neighboring fibers play an important role
�10�.

Sparrow and Loeffler �13�, on the other hand, considered both
square and staggered arrangements of monodispersed fibers. They
used the general solution of Poisson’s equation in the cylindrical
coordinate system and applied the boundary conditions at finite
discrete points. The evaluated coefficients in their series solution
were functions of porosity; therefore, they proposed an approxi-
mate compact relationship, which was reported to be accurate for
highly porous structures, i.e., ��0.9 �13�. The approximate model
of Sparrow and Loeffler �13�, for staggered arrangement, was
identical to the model of Happel �12�. Velocity distribution was
also reported in a tabular form, which was not easy-to-use. Later,
Drummond and Tahir �14� performed a comprehensive analytical
investigation of normal and parallel flows for various ordered ar-
rays of fibers. For parallel flow, they started from the general
solution of Poisson’s equation in the form of a series. Drummond
and Tahir �14� claimed that their singularity method was more
accurate than the approach of Sparrow and Loeffler �13�. How-
ever, the models of Drummond and Tahir �14� for normal flow
were not accurate �15�. Drummond and Tahir �14� did not report
explicit relationships for the velocity distribution.

Wang �16� studied normal and parallel flow through rectangular
arrays of fibers using the eigenfunction expansion and collocation
method. However, Wang �16� did not provide a compact relation-
ship for velocity distribution and the accuracy of the model for
permeability was limited to high porosity structures. Recently,
Tamayol and Bahrami �17�, assuming a parabolic velocity distri-
bution and using an integral technique, determined the normal and
parallel permeabilities of square arrays of cylinders. In a subse-
quent work, Tamayol and Bahrami �18� performed a comprehen-
sive numerical study and reported the normal and the parallel
permeability of square fiber arrangements over a wide range of
porosity. Comparison of the numerical results with their analytical
relationship showed that although their model could capture the
trends of numerical results, the differences were significant in the
medium range of porosity 0.5���0.8 �18�. Comparing the nu-
merical velocity distribution with the parabolic profile, Tamayol
and Bahrami �17� argued that the assumption of parabolic velocity
distribution was not accurate. Therefore, the objectives of the
present study are as follows:

�1� to develop velocity profiles for parallel flow toward ordered
arrays of fibers

�2� to find compact and accurate models for parallel permeabil-
ity in unidirectional fibrous matrices

�3� to verify the analyses through comparison with experimen-
tal and numerical data

In this study, porous material is assumed to be periodic and is
represented by a three-dimensional unit cell. The point matching

technique originally developed by Sparrow and Loeffler �13� for
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taggered and square fiber arrays is followed here and extended to
exagonal fibers arrangement to find analytical solutions for ve-
ocity distribution. The solution is then used to report novel, com-
act, and accurate models for velocity distribution in ordered fi-
ers arrangements. The reported models for velocity distribution
re a powerful tool for finding other transport properties of the
onsidered fibrous media such as heat and mass transfer coeffi-
ients. Employing an integral technique, the proposed relation-
hips for velocity distribution are used to develop compact models
or parallel permeability in the considered geometries. Due to a
ack of experimental and numerical data for parallel flow in uni-
irectional arrangements, numerical simulations are also per-
ormed using FLUENT software �19�, over the entire range of po-
osity to validate the proposed models for velocity distribution
nd permeability.

Geometrical Modeling
Following the approach successfully used by others �20–26� a

epresentative unit cell is considered to analyze the geometry of
he fibrous media. The unit cell �or basic cell� is the smallest
olume, which can represent characteristics of the whole micro-
tructure. In the following subsections, various ordered arrange-
ents, shown in Fig. 1, will be investigated.
Using geometric symmetry, only the selected regions of the unit

ells are considered in the analysis. The solid volume fraction and

ig. 1 Unit cell for „a… square, „b… staggered, and „c… hexago-
al arrangements
orosity of square, staggered, and hexagonal arrays are

14502-2 / Vol. 132, NOVEMBER 2010
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� = 1 − � =�
�d2

4S2 square

�d2

2�3S2
staggered

�d2

3�3S2
hexagonal

� �2�

Therefore, the minimum possible values of � for square, stag-
gered, and hexagonal arrangements with no overlapping are
0.215, 0.094, and 0.395, respectively. These values indicate the
touching limit of fibers.

3 Velocity Distribution
Laminar, steady, and fully developed flow parallel to square,

staggered, and hexagonal fiber arrangements, shown in Fig. 1, is
investigated. Darcy’s relationship, Eq. �1�, holds when the flow
passing through pores is in creeping regime, i.e., inertial effects
are negligible �1�. In the fully developed parallel flow, the velocity
vector has only one nonzero component, which is in the length-
wise direction. As such, the following analyses are valid for the
entire range of laminar flows. Applying the abovementioned as-
sumptions, the conservation of linear momentum leads to Pois-
son’s equation

�2w

�r2 +
�w

r � r
+

�2w

r2 � �2 =
1

�
�dP

dz
	 �3�

where w is the velocity component in the z-direction. The general
solution of this equation is �27�

w = A + B ln r +
r2

4�
�dP

dz
	 + 


k=1

�

�Ckr
k + Dkr

−k��Ek cos k�

+ Fk sin k�� �4�

For square arrangement, symmetry lines are located at �=0 and
�=� /4. The first condition results in Fk=0 and the second con-
dition holds when k=4,8 ,12, . . .. The no-slip boundary condition
on the solid walls leads to

Dk = Ckr0
2k and A = − B ln r0 −

r0
2

4�
�dP

dz
	 �5�

Total frictional force exerted on the fluid by solid rods must be
balanced by the net pressure force acting over the entire cross-
section of the basic cell.

�
0

�/4

�� �w

�r
	

r=r0

r0d� =�
0

�/4�
r0

S/2 cos � �dP

dz
	rdrd� �6�

Solving for Eq. �6�, the constant B can be found

B = −
S2

2��
�dP

dz
	 �7�

Consequently, the velocity distribution becomes

w� = � 2S2

�d2 ln 	 −
	2 − 1

4
+ 


k=1

�
Gkd

4k−2

24kS4k−2 �	4k − 	−4k�cos 4k�

�8�

w� =
w

−
d2 �dP	 , 	 =

r

d/2

4� dz
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he last constant Gk is found by applying the symmetry condition
n the unit cell border where r=S / �2 cos ��. Therefore, one can
rite

2

�
�cos ��2 −

1

2
+ 


k=1

�
gk

cos �4k−1�cos�4k − 1�� + �d cos �

S
	8k

cos�4k

+ 1��
 = 0 �9�

here

gk = Gk4k�S

2
	4k−2

�10�

parrow and Loeffler �13� applied Eq. �9� at a finite number of
oints along the boundary and solved the resulting set of linear
quations to determine the unknown coefficients, i.e., gk. The
ame approach is followed here and the calculated coefficients for
everal porosities are listed in Table 1. The listed values are in
greement with the values reported by Sparrow and Loeffler �13�.

The triangular unit cell section for the staggered fiber arrange-
ents is shown in Fig. 1�b�. The symmetry boundaries are located

t �=0 and �=� /6. The governing equation and its general solu-
ion are still Eqs. �4� and �5�. Following the same procedure used
n the previous subsection and applying symmetry boundary con-

Table 1 Calculated coeffic

Square a

S /d � g1 g

4.0 0.95 
0.1253 
0.0
2.0 0.80 
0.1250 
0.0
1.5 0.65 
0.1225 
0.0
1.2 0.45 
0.1104 
0.0
1.1 0.35 
0.0987 0.0
1.05 0.29 
0.0904 0.0

Staggered
4.0 0.94 
0.0505 
0.0
2.0 0.77 
0. 0505 
0.0
1.5 0.60 
0. 0502 
0.0
1.2 0.37 
0. 0469 0.0
1.1 0.25 
0.0416 0.0
1.05 0.18 
0.0368 0.0

Hexagonal
4.0 0.96 
0.2850 
0.0
2.0 0.85 
0.2827 
0.0
1.5 0.73 
0.2728 
0.0
1.2 0.58 
0.2433 
0.0
1.1 0.50 
0.2216 0.0
1.05 0.45 
0.2076 0.0
itions leads to

ournal of Fluids Engineering
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w� = ��3S2

�d2 ln 	 −
	2 − 1

4
+ 


k=1

�
gk

6k
�d

S
	6k−2

�	6k − 	−6k�cos 6k�

�11�

The unknown coefficients are evaluated with the same approach
used for square arrangements and the results as listed in Table 1.

Following the same approach and considering the location of
the symmetry lines for hexagonal arrays at �=0 and �=� /3, the
velocity distribution can be found as

w� = � 3�3S2

2�d2 ln 	 −
	2 − 1

4
+ 


k=1

�
gk

3k
�d

S
	3k−2

�	3k − 	−3k�cos 3k�

�12�

The unknown coefficients are listed in Table 1. From the listed
coefficients in Table 1 and the form of the series solutions in Eqs.
�8�, �11�, and �12�, it is expected that truncating the series from the
second term, does not affect the velocity distributions signifi-
cantly. Our analysis also showed that substituting g1 with an av-
erage value has a negligible impact on the predicted results �less
than 4%�. Therefore, g1 is replaced by −0.107, −0.0437, and
−0.246 for square, staggered, and hexagonal arrangements, re-

ts in velocity distribution.

gement

g3 g4 g5


0.0006 0 0

0.0006 0 0

0.0002 0 0

0.0015 0.0003 0

0.0029 0.0005 0
0.0032 0.0002 0

angement
0.0000 0 0
0.0000 0 0
0.0001 0 0
0.0002 0.0000 0
0.0004 0.0000 0
0.0003 
0.0001 0.0000

angement

0.0048 
0.0006 
0.0001

0.0043 
0.0005 0.0000

0.0019 0.0002 0.0001

0.0053 0.0021 0.0006
0.0093 0.0029 0.0004
0.0103 0.0027 
0.0003
spectively. Hence, the velocity distribution will be
w� =��
2S2

�d2 ln 	 −
	2 − 1

4
−

0.0287d2

S2 �	4 − 	−4�cos 4�
 square

��3S2

�d2 ln 	 −
	2 − 1

4
−

0.007d4

S4 �	6 − 	−6�cos 6�
 staggered

�3�3S2

2�d2 ln 	 −
	2 − 1

4
−

0.082d

S
�	3 − 	−3�cos 3�
 hexagonal

� �13�
ien

rran

2

106
105
091
024
036
073
arr
008
008
007
007
028
043
arr

365
350
286
096
038
116
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quation �13� is valid over the entire range of porosity for the
onsidered geometries.

3.1 Numerical Simulations. Due to the lack of experimental
nd numerical data for parallel flow through ordered arrangements
f fibers �15�, a numerical study is performed using FLUENT soft-
are �19� to verify the solution. Structured grids are generated
sing Gambit �19�, the preprocessor in the FLUENT �19� package;
umerical grid aspect ratios are kept in the range of 1–5. FLUENT

19� is a finite volume based code and a second order upwind
cheme is selected to discretize the governing equations. SIMPLE
lgorithm is employed for pressure-velocity coupling. The inlet
elocity to the media is assumed to be uniform; this assumption
llows one to study the developing length. To ensure that the fully
eveloped condition is achieved, very long cylinders are consid-
red, i.e., L /d�40; the fully developed section pressure drops are
sed for calculating the permeability. Constant pressure boundary
ondition is applied on the computational domain outlet. The sym-
etry boundary condition is applied on the side borders of the

nit cells. Grid independence is tested for different cases and the
ize of the computational grids used for each geometry are se-
ected such that the maximum difference in the predicted values
or pressure gradient is less than 2%. The convergence criterion,
.e., the maximum relative error in the value of dependent vari-
bles between two successive iterations, is set at 10−6.

To verify the proposed velocity distribution for the square ar-
angements, numerical and analytical velocity profiles are plotted
n Figs. 2 and 3 for square and staggered arrangements. The ve-
ocity magnitudes are nondimensionalized using the volume-
veraged velocity UD. These figures indicate that Eq. �13� accu-
ately predicts the velocity distribution in the considered
eometries.

Permeability
Velocity distributions are developed analytically for parallel

ow through square, staggered, and hexagonal arrays of cylinders
n previous sections. Moreover, the flow-fields are solved numeri-
ally to verify the theoretical results. The volumetric flow rate that
asses the medium is found by integrating Eq. �13� over the pore
rea. Substituting for dP /dz from Darcy’s equation and using the
olid volume fraction definitions for square arrangement of fibers,
he nondimensional permeability is simplified as

� =
K

d2

=�
1

16�
�− 1.479 − ln � + 2� −

�2

2
− 0.0186�4
 square

1

16�
�− 1.498 − ln � + 2� −

�2

2
− 0.0018�6
 staggered

1

16�
�− 1.352 − ln � + 2� −

�2

2
− 0.246�3
 hexagonal

�14�

o verify the proposed model for parallel permeability of square
rrays, Eq. �14�, and numerical results are plotted in Fig. 4. In
ddition, experimental data of Sullivan �28� and Skartsis et al.
29� and the numerical results reported by Higdon and Ford �26�
re included. Figure 4 shows that the present model is in agree-
ent with the experimental and the numerical data. The maximum

ifference of the present model with numerical and experimental
ata is less than 8%. The present solution is compared with the
nalytical models of Happel �12� and Tamayol and Bahrami �17�
n Fig. 5. As shown in Fig. 5, the present model accurately pre-
icts the numerical results. More importantly, the present solution
nables one to predict the velocity distribution in the unit cell.

lthough the model of Drummond and Tahir �14� is accurate, they

14502-4 / Vol. 132, NOVEMBER 2010
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Fig. 2 „a… analytical velocity contours, Eq. „13…, „b… numerical
velocity contours, and „c… analytical velocity distribution for a
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id not provide a compact relationship for the velocity distribu-
ion.

In Fig. 6, the present model is compared with the numerical
esults, an experimental data reported by Farlow �27�, and the

ig. 3 Present velocity distributions for staggered arrange-
ent of cylinders with ε=0.45 „a… analytical, Eq. „13…, and „b…
umerical
odels of Happel �12� and Drummond and Tahir �14�. In addition,

ournal of Fluids Engineering

ded 21 Mar 2011 to 142.58.186.224. Redistribution subject to ASM
the permeability of touching fibers is calculated from the solution
of Shit �30� for touching fibers and is included in Fig. 6. This
figure shows that the present model is accurate over the entire
range of porosity; especially, in lower porosities were the other
models fail.

The present analytical solution, present numerical results, the
models of Drummond and Tahir �14� and Happel �12� for hexago-
nal arrangement are compared in Fig. 7. The proposed relationship
for permeability of hexagonal arrays captures the numerical re-
sults within 9% accuracy.

The relationships for dimensionless permeability of various ar-
rangements, given in Eq. �14�, are very similar to each other and
the differences are in the constants and the higher order terms. The
higher order terms become negligible for highly porous structures,
i.e., �→0. Therefore, it is expected that the three equations lead
to almost identical values in this limit. As shown in Fig. 8, for
��0.85 the difference between the models is less than 5%; there-
fore, the permeability can be considered to be independent of
microstructure. For lower porosities, on the other hand, the effect
of higher order terms is considerable and the staggered array has
the lowest permeability while the hexagonal arrangement is the

Fig. 4 Comparison of the proposed model with the numerical
and experimental results; square arrangement

Fig. 5 Comparison of the proposed model, experimental and
numerical data, and other existing models; square

arrangement

NOVEMBER 2010, Vol. 132 / 114502-5
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ost permeable microstructure. This is in-line with our previous
bservations for fully developed flow through channels with regu-
ar polygonal cross sections �31�.

Summary and Conclusions
Fluid flow parallel to staggered, square, and hexagonal arrays

f cylinders is studied both analytically and numerically. A trun-
ated form of the series solution of Poisson’s equation provides
ccurate results for velocity distribution in the investigated
hannel-like geometries. Using the proposed solutions and by ne-
lecting higher other terms in the series solutions, compact mod-
ls are developed for permeability of the media.

Independent numerical simulations are performed to verify the
olutions for velocity distribution and permeability. The present
pproach captures the numerical results for permeability within
aximum 10% accuracy for the considered arrangements, respec-

ively. Fiber arrangement has negligible effect on the pressure
rop and permeability for high porosities ��0.85. On the other
and, for lower porosities the effect of microstructure is signifi-
ant and staggered arrays have lower permeability than other ar-
angements. As such, use of hexagonal arrays of tube in heat
xchangers reduces the consequent pressure drop.

ig. 6 Comparison of the proposed model, an experimental
ata point „touching limit…, and other existing models; stag-
ered arrangement

ig. 7 Comparison of the proposed model with other existing

odels; hexagonal arrangement

14502-6 / Vol. 132, NOVEMBER 2010
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Nomenclature
d � fiber diameter, m
K � viscous permeability, m2

K� � dimensionless viscous permeability, K�=K /d2

P � pressure, Pa
Q � volumetric flow rate, m3 /s
r0 � fiber radius, m
S � distance between adjacent fibers, m

UD � volume-averaged superficial velocity, m/s
w � velocity in z-direction, m/s

Greek Symbols
� � porosity
� � fluid viscosity, Ns /m2

� � solid volume fraction, �=1−�
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